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The diffusive behaviour of swimming micro-organisms should be clarified in order
to obtain a better continuum model for cell suspensions. In this paper, a swimming
micro-organism is modelled as a squirming sphere with prescribed tangential surface
velocity, in which the centre of mass of the sphere may be displaced from the
geometric centre (bottom-heaviness). Effects of inertia and Brownian motion are
neglected, because real micro-organisms swim at very low Reynolds numbers but are
too large for Brownian effects to be important. The three-dimensional movement of
64 or 27 identical squirmers in a fluid otherwise at rest, contained in a cube with
periodic boundary conditions, is dynamically computed, for random initial positions
and orientations. The computation utilizes a database of pairwise interactions that
has been constructed by the boundary element method. In the case of non-bottom-
heavy squirmers, both the translational and the orientational spreading of squirmers
is correctly described as a diffusive process over a sufficiently long time scale, even
though all the movements of the squirmers were deterministically calculated. Scaling
of the results on the assumption that the squirmer trajectories are unbiased random
walks is shown to capture some but not all of the main features of the results. In
the case of bottom-heavy squirmers, the diffusive behaviour in squirmers’ orientations
can be described by a biased random walk model, but only when the effect of
hydrodynamic interaction dominates that of the bottom-heaviness. The spreading of
bottom-heavy squirmers in the horizontal directions show diffusive behaviour, and
that in the vertical direction also does when the average upward velocity is subtracted.
The rotational diffusivity in this case, at a volume fraction c =0.1, is shown to be
at least as large as that previously measured in very dilute populations of swimming
algal cells (Chlamydomonas nivalis).

1. Introduction
The size of micro-organisms is usually much smaller than the flow field of interest,

in an oceanic plankton bloom for instance, so a suspension of micro-organisms is
often modelled as a continuum in which the variables are volume-averaged quantities
(Pedley & Kessler 1992; Metcalfe, Pedley & Thingstad 2004). Continuum models
for suspensions of swimming micro-organisms have been proposed for the analysis
of phenomena such as bioconvection (e.g. Childress, Levandowsky & Spiegel 1975;
Pedley & Kessler 1990; Hillesdon, Pedley & Kessler 1995; Bees & Hill, 1998; Metcalfe
& Pedley, 2001). One of the most important equations in such continuum models is
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the cell-conservation equation, which can be expressed as

Dn

Dt
= −∇ · (nV c + J r ) , (1.1)

where n is the number density of cells, V c is the mean cell swimming velocity
and J r is the flux due to random or chaotic cell swimming. (One can add other
terms, such as birth and death rates, if they are large enough to be important.)
An essential ingredient of such mathematical models is a quantitative description
of the random swimming behaviour of cells. Micro-organisms, even of the same
species, have some genetic randomness, in size and in shape, which may induce
different swimming speeds, swimming directions and swimming trajectories for each
micro-organism. There may be some randomness in their reaction to light, gravity,
nutrient and to other micro-organisms. In addition, the trajectories of individual cells
resemble random walks (Hill & Häder 1997; Vladimirov et al. 2004). In the case
of non-dilute suspensions of micro-organisms, the hydrodynamic interaction between
cells induces frequent changes in the orientations of cells, and this interaction may
also be modelled as a chaotic process. The continuum models proposed so far are,
however, restricted to dilute suspensions, in which cell–cell interactions are negligible.
Moreover the overall random or chaotic behaviour of swimming micro-organisms is
usually described as a diffusive process, given by

J r = −D · ∇n, (1.2)

where D is the effective diffusivity tensor.
Childress et al. (1975) recognized that vertical cell swimming would lead to an

aniso-tropic cell diffusivity tensor. Although they had no way of estimating the ratio
of horizontal to vertical diffusivities, the results of their analysis agreed better with
experiments involving Tetrahymena if the horizontal diffusivity were significantly less
than the vertical diffusivity. Hill & Häder (1997) have plotted horizontal and vertical
projections of a large number of individual trajectories of the bottom-heavy alga
Chlamydomonas nivalis, swimming in a fluid with no imposed ambient flow so that
the only orienting mechanism is gravity, which we would expect to cause the cells
to swim vertically upwards on average. The cell concentrations used in the study
were less than about 2 × 106 cells cm−3, which corresponds to a volume fraction c of
about 10−3. The suspension can be regarded as dilute and the effect of interaction
between micro-organisms may be supposed negligible. The observed cell trajectories
show significant randomness, and the diffusive process could be correctly modelled
by a biased random walk. Vladimirov et al. (2000, 2004) employed laser velocimetry
to track a few hundred individual C. nivalis cells simultaneously. The results showed
that cell diffusion could again be described by a random walk model. They found
the rotational diffusivity Dr to be between 0.018 s−1 and 0.07 s−1, which is much
smaller than the values of 0.4 s−1 to 2.2 s−1 obtained by Hill & Häder (1997). In both
these experiments the cell–cell interactions were negligible, so the mechanism for the
diffusive process must lie in the random differences in swimming direction and speed
between cells and the intrinsic random behaviour of individual cells.

Experiments by Kessler, Hill & Häder (1992) have shown that the effect of cell-
cell interactions may not be neglected at cell concentrations greater than about
5 × 106 cells cm−3, in the case of C. nivalis, which corresponds to a volume fraction
c of about 2.5 × 10−3. The effect of cell-cell interaction on the diffusive process of
micro-organisms is not clear, because previous researchers measured the diffusivity
in dilute suspensions precisely in order to remove the interaction effect. Even if the
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suspension is not dilute enough, diffusion is caused not only by cell-cell interactions
but also by the intrinsic randomness of individual cells, so it is difficult to extract the
cell-cell interaction effect from the overall results. Indeed, it may not be true that the
effect of cell-cell interaction can be described by a random walk model, because, in
the case of non-Brownian particles, the hydrodynamic interaction can be described
deterministically by the equations of fluid dynamics. This paper will investigate
whether the effect of hydrodynamic interaction between cells can be described as a
diffusive process or not.

There are several kinds of diffusive phenomena, such as self-diffusion in a suspension
of uniform concentration, gradient diffusion, shear-induced diffusion from regions of
high shear to low (see e.g. Acrivos 1995; Wang, Murai & Acrivos 1998; Breedveld et al.
1998; Marchiro & Acrivos 2001; Drazer et al. 2002; Foss & Brady 1999, 2000; Sierou
& Brady 2004). In this paper, we analyse the self-diffusion of a marked squirmer in
a suspension of uniform concentration in which the only motions are those induced
by the squirming (see below for a definition of squirming). Self-diffusion also appears
for particles with Brownian motion. The expressions for translational and rotational
diffusivities of a very dilute dispersion of independent Brownian spheres of radius a

are given by

DT =
kT

6πµa
I, DR =

kT

8πµa3
I, (1.3)

where DT and DR are the translational and rotational diffusivities, respectively, k is the
Boltzmann constant, T is the temperature, µ is the viscosity, and I is the unit tensor.
Batchelor (1976) derived the gradient diffusivity in a dilute monodisperse system as

DT =
kT

6πµa
I(1 + 1.45c). (1.4)

The essential difference between Brownian spheres and squirmers is whether they
show diffusivity in a very dilute suspension or not: in the absence of interaction, a
squirmer swims in a straight line at constant speed, which is quite different from a
diffusive process.

The model micro-organism used in this paper is exactly the same as the one used
by Ishikawa, Simmonds & Pedley (2006) and Ishikawa & Pedley (2007), and will be
referred to as a squirmer. Full details of a squirmer were given in Ishikawa et al. (2006),
so only a brief explanation will be given here. A squirmer has a spherical shape, with
surface tangential velocities given by (2.4) below. It is assumed to be neutrally buoyant,
because the sedimentation velocity for typical aquatic micro-organisms is much less
than the swimming speed, which can be up to hundreds of µms−1. The centre of
buoyancy of the spherical micro-organism may not coincide with its geometric centre.
The model micro-organism is, therefore, force-free but may not be torque-free. The
flow field around the micro-organisms is assumed to be Stokes flow and Brownian
motion is not taken into account. The model of a squirmer was first proposed by
Lighthill (1952), was extended by Blake (1971), and has also been used by Magar,
Goto & Pedley (2003) to analyse nutrient uptake properties of a solitary squirmer.

In this paper, the three-dimensional movement of 64 or 27 identical squirmers in
a fluid otherwise at rest is dynamically computed, for random initial positions and
orientations, with the help of a database of pairwise interactions constructed by the
boundary element method (Ishikawa et al. 2006). The numerical method is the same
as employed by Ishikawa & Pedley (2007) and will be described only very briefly in
§ 2. In § 3, the diffusive behaviour of a semi-dilute suspension of non-bottom-heavy
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Figure 1. A sketch of the arrangement of a bottom-heavy squirmer. Gravity acts in the
g-direction, while the squirmer has orientation vector e, radius a and its centre of mass is at
distance h from its geometrical centre.

squirmers will be investigated. In this case, there is no preferred swimming direction.
Therefore, the translational and rotational diffusivity tensors of the squirmers, if they
exist, should be isotropic. The effects of volume fraction and squirming mode on the
diffusive properties will be demonstrated and the scaling of the results discussed in
terms of a simple random walk model. In § 4, the diffusive behaviour of a semi-dilute
suspension of bottom-heavy squirmers will be investigated. Such squirmers tend to
swim upwards on average, and the diffusivity tensor is no longer expected to be
isotropic. The effects of volume fraction, squirming mode and the strength of the
bottom-heaviness will be discussed.

2. Numerical methods
Only a brief outline of the numerical method will be given here; for more detail,

see Ishikawa & Pedley (2007). In the absence of Brownian motion and at negligible
particle Reynolds number, the equation of motion for N identical squirmers suspended
in a Newtonian fluid otherwise at rest can be written as

−R · U + Fsq + Ftor + Frep = 0. (2.1)

Here U is a vector of dimension 6N containing the translational–rotational velocities
of the N particles evaluated at the squirmer centre. R is the grand resistance matrix of
dimension 6N × 6N , which is constructed by a pairwise superposition of exact results
for two inert spheres, which can be found in standard texts (e.g. Kim & Karrila 1992).
The pairwise additivity is an approximation, but it is expected to be justified if the
particle volume fraction is not too large (defining semi-dilute). Fsq is the force–torque
due to the squirming motion, which is calculated from superposition of the pairwise
interactions between squirmers (Ishikawa et al. 2006). We should note that Fsq

includes the effect of high multipoles, because they are captured in the computation
using a boundary element method. Ftor represents the external torques due to the
bottom-heaviness. If the distance of the centre of gravity is h from the centre of the
squirmer, in the opposite direction to its swimming direction in undisturbed fluid (see
figure 1), then there is an additional torque of

Ftor = 4
3
πa3ρhe ∧ g, (2.2)

where ρ is the density of the cell, e is the unit orientation vector of a cell, g is
the gravitational acceleration vector, and the gravitational direction is g/g. Frep

represents the non-hydrodynamic interparticle repulsive force that is added to the
system in order to avoid the prohibitively small time step needed to overcome the
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problem of overlapping particles:

Frep = α1

α2 exp(−α2ε)

1 − exp(−α2ε)

r
r
, (2.3)

where α1 is a dimensional coefficient, α2 is a dimensionless coefficient and ε is the
gap between squirmer surfaces non-dimensionalized by their radius. The coefficients
used in this study are α1/(µaUsol ) = 10−2 and α2 = 103, where µ is the fluid viscosity,
a is the radius, and Usol is the swimming speed of a solitary cell. The minimum
separation obtained with these parameters is in the range 10−4–10−5. The effect of
the repulsive force on the trajectories of cells is very small, because it acts only in
the very near-field and changes the distance between particles by only around 10−4.
Therefore, the diffusive behaviour calculated from the trajectories of individual cells
will also be unaffected by the repulsive force.

The model micro-organism used in this paper (a squirmer) is the same as the
one used by Ishikawa et al. (2006), based on Blake (1971). The sphere’s surface is
assumed to move purely tangentially and these tangential motions are assumed to
be axisymmetric and time-independent. Thus the tangential surface velocity on a
squirmer is given as

us =

2∑
n=1

2

n(n + 1)
Bn

(
e · r
r

r
r

− e
)

P ′
n(e · r/r), (2.4)

where Pn is the nth Legendre polynomial, r is the position vector and r = |r |. We will
follow Ishikawa et al. (2006), and omit squirming modes higher than the second mode,
i.e. Bn = 0 in us when n � 3. We denote by β the ratio of second mode squirming
to first mode squirming, i.e. β = B2/B1. The swimming speed of a solitary squirmer
is Usol = 2B1/3, and its stresslet strength is proportional to B2. We note that β > 0
corresponds to pullers, such as the bottom-heavy biflagellate algae Chlamydomonas,
while β < 0 corresponds to pushers, such as spermatozoa or bacteria.

The translational cell diffusivity is a measure of the increasing displacements
between pairs of particles. Thus one calculates the mean square displacement, which
necessarily grows with time. If it grows more rapidly than linearly in time, then the
spread is not diffusive (if proportional to t2, it is as if the relative velocity of two
spheres is constant), but if it becomes linear in time then the spread is diffusive. Thus
we divide the mean square displacement by time, to see if it becomes constant: the
translational cell diffusivity DT is defined by

DT =

∫ ∞

0

〈U(t)U(0)〉 dt = lim
t→∞

〈[r(t) − r(0)] [r(t) − r(0)]〉
2t

, (2.5)

where r is the translational displacement. A similar calculation is carried out for
angular displacement, leading to rotational cell diffusivity DR:

DR =

∫ ∞

0

〈Ω(t)Ω(0)〉 dt = lim
t→∞

〈[ω(t) − ω(0)] [ω(t) − ω(0)]〉
2t

, (2.6)

where ω is the rotational displacement. The displacements can be calculated from the
translational velocity U and the rotational velocity Ω as follows:

r =

∫
U dt, ω =

∫
Ω dt. (2.7)
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The brackets 〈〉 indicate an average value over M different time steps for N squirmers,
so the average displacement, for example, is

〈r(t) − r(0)〉 =
1

MN

M∑
m=1

N∑
n=1

rn(t + m dt) − rn(m dt), (2.8)

where dt is the time step used in the numerical simulation.
Bottom-heavy squirmers tend to swim upwards on average. Thus, one needs to

subtract this average velocity in discussing the translational diffusivity. In such a case,
r̂ instead of r is used in equation (2.5), where

r̂ =

∫
U − 〈U〉 dt, (2.9)

and 〈U〉 is the average upward swimming velocity.
The effective diffusivity of a collection of particles can be specified in terms of the

velocity autocorrelation function as well as in terms of the mean square displacement,
as in (2.5) and (2.6). It is shown in the Appendix (equation (A 1)) that the two
definitions lead asymptotically to the same answer in this case, which acts as a check
on the validity of the computations.

The computational region is a cube of side L. To model a suspension of infinite
extent, periodic boundary conditions are employed. A squirmer is taken to interact
with the other squirmers in that periodic cell whose centre coincides with the
squirmer’s centre, and interactions with particles outside the cell are neglected. This
treatment can be justified for c < 0.1. The translational displacement is calculated
from (2.7), so the trajectories are traced outside the periodic cell. The time-marching
is performed by the fourth-order Adams–Bashforth scheme from random initial
positions and orientations. The effect of the particle number on diffusion coefficients
has been checked numerically by using 27, 64 and 125 particles. Twenty-seven particles
are employed for non-bottom-heavy squirmers, and 64 particles are employed for
bottom-heavy ones; the difference of the diffusivities from their values for the next
larger number of particles becomes about 2% or less in our parameter range. The
reason why the diffusivities are not strongly dependent on the particle number is that
most of the interactions are pairwise and that the effect of a third particle is very small
in the semi-dilute suspension. (Batchelor & Green 1972 showed that the rheological
properties of a semi-dilute suspension can be obtained just by considering two-particle
interactions.) In a concentrated suspension, however, particles form clusters and the
microstructure is strongly dependent on the system size, i.e. the number of particles in
the computational domain. We do not discuss such high concentration cases in this
study. The computation for non-bottom-heavy squirmers will be performed during
the time interval of t =0–1000 or more, and that for bottom-heavy squirmers will
be t = 0–400 or more because of the high computational load when 64 particles are
used. The suspension average values are calculated by averaging all particles in the
computational cell from t = 50 to the end of the computation. It is confirmed that the
probability density function for the relative position of a pair of squirmers becomes
independent of specific initial conditions after t = 50.

All quantities are non-dimensionalized using the radius a, characteristic velocity
Usol = 2B1/3, characteristic time a/Usol and the fluid viscosity µ. There is one
important dimensionless parameter in addition to β: Gbh . Gbh is the ratio of the
gravitational torque to a scale for the viscous torque, assuming that Usol/a is a
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Figure 2. Trajectories during the five previous time intervals for 27 identical squirmers with
β = 5 in a fluid otherwise at rest (c =0.1).

suitable scale for the angular velocity, and is defined as

Gbh =
2πρgah

µB1

. (2.10)

3. A semi-dilute suspension of non-bottom-heavy squirmers
3.1. Simulation results

In the case of non-bottom-heavy squirmers, there is no preferred orientation. If
the swimming trajectories of squirmers are chaotic, the diffusivity tensor should be
isotropic. Only if all squirmers start off squirming in exactly the same direction, on
the other hand, do they remain so, and the spreading process is no longer diffusive.
Here, we will mainly discuss the average of the three diagonal components in the
diffusion tensors defined as

DT =
DT

xx + DT
yy + DT

zz

3
, DR =

DR
xx + DR

yy + DR
zz

3
. (3.1)

The three-dimensional movement of 27 identical non-bottom-heavy squirmers with
β = 5 in a fluid otherwise at rest is computed with volume fraction c = 0.1. The
instantaneous positions of the squirmers and their trajectories over the five previous
time intervals are shown in figure 2. Note, however, that trajectories for calculating
the translational displacement are traced outside the periodic cell. We see that the
trajectories of squirmers are not straight, because the hydrodynamic interaction
between squirmers causes them to change direction. The results for two-squirmer
interactions with β > 0 have shown that the squirmers first attract each other, then
they change their orientation dramatically when they are in near-contact, and finally
they separate from each other (see Ishikawa et al. 2006).
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Figure 3. Effective velocity of squirmers with β = 5 (c = 0.1). The broken line represents the
value of Ue(0).

Before discussing the diffusivities, we first introduce an effective velocity Ue(�t)
defined as

Ue(�t) =

〈∣∣∣∣ r(t + �t) − r(t)
�t

∣∣∣∣
〉

. (3.2)

This effective velocity with β = 5 and c = 0.1 is shown as a function of �t in figure 3,
in which the broken line represents the value of Ue(0). We see that Ue decreases with
increasing �t and the value of Ue(0) is greater than one. If there were no interaction
between squirmers, the swimming velocities of all the squirmers should be one. The
decrease of Ue(�t) with increasing �t indicates that there are interactions between
squirmers, causing repeated changes in swimming directions. However, the value of
Ue(0) in this case is about 1.14, which means the absolute value of the instantaneous
velocity is increased by the interaction, because a given squirmer is always swimming
in the flow field generated by others. This effect can be shown analytically when the
squirmers are far enough apart for a far-field description of the velocity field to be
justified, as follows. Let a solitary squirmer be at the origin of coordinates with the
orientation vector e. The velocity field generated by the squirmer is given by:

u(r) = − 1

3r3
B1 e +

2

3r3
B1

e · r
r

r
r

+

(
1

r4
− 1

r2

)
B2P2

r
r

+
1

3r4
B2P

′
2

(
e · r
r

r
r

− e

)
(3.3)

(see Ishikawa et al. 2006). Let an additional squirmer be introduced at r2 with the
orientation vector e2. If the two squirmers’ separation is great enough, i.e. |r2| � 1,
the velocity of the second squirmer can be approximated by the sum of two velocities:
(i) the velocity of a solitary squirmer at r2 with orientation e2, and (ii) the velocity
generated at r2 by the first squirmer in the absence of the second squirmer, which is
given by (3.3). If one assumes an isotropic probability distribution for two squirmers’
relative position and orientation, which may be true if they are far apart, the following
inequality is satisfied:

|U2(r)| =
1

4πr2

∫ ∫ ∫
r=const

|U2(e, e2, r2)|de de2 dr2

=

∫ π

0

∫ π

0

sin θ sinφ

4

√
(1 + |u(r2)| cos φ)2 + (|u(r2)| sinφ)2 dφ dθ � 1, (3.4)
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Figure 4. Translational and rotational diffusivities of squirmers during the time interval
of �t (β =5 and c = 0.1).

where θ is the angle between e and r2, and φ is the angle between e2 and u(r2). This
inequality indicates that the absolute value of the instantaneous velocity is increased
by the interaction, at least in the far-field.

We have also performed some trial simulations of a rather dense suspension, with
c = 0.3 for example, although the approximation of pairwise additivity may not be
accurate then. The results show that the effective velocity is much less than one if c

is large enough, even at �t = 0, because there is not enough room for squirmers to
swim freely.

The instantaneous translational–rotational velocities are integrated in time, as given
by (2.7), and translational–rotational effective diffusivities are calculated from (3.1) as

〈|r(t + �t) − r(t)|2〉
2�t

,
〈|ω(t + �t) − ω(t)|2〉

2�t
. (3.5)

The results with β = 5 and c =0.1 are shown in figure 4 on a log-log plot. For
comparison, lines of slope 1 are drawn as well. If there were no interaction between
squirmers, the translational velocity of the squirmers would be constant, and the
effective diffusivity would be proportional to �t . We see from figure 4 that the
inclination is about one when �t < 2, which means that most of the squirmers swim
constantly in their original directions over a short time interval. When �t > 2, on
the other hand, the inclination decreases from one, reflecting the occurrence of the
hydrodynamic interactions.

Similarly, if there were no interaction between squirmers, the rotational velocity
of the squirmers should be zero. Rotational square displacements appear because of
the interactions, and the effective rotational diffusivity varies approximately linearly
with �t when �t < 1. This result indicates that the squirmers rotate with almost
constant angular velocities when �t < 1. Over a short time interval, the configuration
of squirmers in a computational cell does not change significantly, and the rotational
velocities caused by the interactions between squirmers are similar. Over a long
time interval, however, the configuration changes considerably, and the rotational
velocities also change as time goes by. Thus the inclination of the slope of the
rotational diffusivity curve in figure 4 becomes less than one when �t > 1.
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Figure 5. Effect of volume fraction on the effective velocity of squirmers with β = 5.
(a) Translational diffusivity, (b) rotational diffusivity.

We note that both translational and rotational diffusivities converge to constant
values if �t is taken long enough. Therefore, the spreading of squirmers is correctly
described as a diffusive process over a sufficiently long time scale, even though all the
movements of the individual squirmers were deterministic. The diffusivity is larger
for translation than for rotation, because a solitary squirmer swims with a constant
translational velocity but without a rotational velocity. The time interval for constant
diffusivity to appear is longer for translation than for rotation. In § 3.2 we develop a
scaling argument to attempt to explain this.

The effect of volume fraction has been investigated, and the results for the effective
velocity at different values of c are shown in figure 5 (β = 5). We see that Ue decreases
more rapidly with �t for larger values of c. This is because the interaction between
squirmers increases with c, with more frequent changes in direction. The absolute
value of the instantaneous velocity, Ue(0), increases slightly with c in this range,
though this is not distinguishable in figure 5. This is because the hydrodynamic
interaction tends to increase the instantaneous velocity, in the semi-dilute regime, as
mentioned above.

The effect of volume fraction on the translational and rotational diffusivities is
shown in figures 6(a) and 6(b), respectively (β = 5). It is found that the translational
diffusivity decreases with increasing c, because more frequent direction changes
prevent the squirmers from spreading so fast. The rotational diffusivity on the other
hand increases with increasing c, again because of the more frequent direction changes.

The parameter β is the ratio of second-mode squirming to first-mode squirming in
(2.4), i.e. β = B2/B1. The values of β used here are from −5 to 10; the velocity fields
generated by a solitary squirmer with β = 1 and 5 can be found in Ishikawa et al.
(2006); in particular, when β > 1, there is a recirculation region behind the squirmer,
and when β < −1 there is one in front. The values |β| =5 and 10 are chosen in
order to observe in an obvious way the effect of second-mode squirming. The effect
of β on the effective velocity is shown in figure 7 (c = 0.1). We see that the effective
velocity decreases more rapidly as |β| increases. This is because the interactions
between squirmers increase with |β| (see Ishikawa et al. 2006), and the interactions
cause changes in swimming direction. The absolute value of instantaneous velocity,
Ue(0), increases slightly with β when β > 0, because the hydrodynamic interaction
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Figure 6. Effect of volume fraction on the diffusivities of squirmers during the time
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Figure 7. Effect of β on the effective velocity of squirmers (c = 0.1). (a) Translational
diffusivity, (b) rotational diffusivity.

has the effect of increasing the velocity, in the semi-dilute regime, as discussed before.
However, when β = −1, Ue(0) is less than one because the effective repulsion between
squirmers with β = −1 tends to reduce the velocity of one squirmer relative to another.
Also the rate of reduction of Ue(�t) with �t is greater for negative β than for positive
β of the same magnitude. In general terms, though, the effect of increasing |β| is
similar to that of increasing c, because both increase the rate of hydrodynamic
interactions.

The effect of β on the translational and rotational diffusivities is shown in
figures 8(a) and 8(b), respectively (c = 0.1). The translational spreading for �t < 1
is increased as |β| is increased (especially for β > 0 because this increases the
instantaneous velocity of squirmers). The translational diffusivity for �t > 20, on the
other hand, is decreased by |β| because of the increased interaction between squirmers.
The time interval for squirmers to show an approximately constant translational
diffusivity increases as |β| decreases, and diffusive spreading was not found for
β = +1, even for �t as large as 300.

The rotational diffusivity always increases with increasing |β|, because the rotational
velocity is generated by the interaction and the interaction increases with increasing
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Figure 8. Effect of β on the diffusivities of squirmers during the time interval of �t
(c =0.1). (a) Translational diffusivity, (b) rotational diffusivity.

|β|. The time interval for squirmers to show rotational diffusivity is also much less
affected by β than for translational diffusivity. We currently have no explanation for
the reduction in DR for 10 < �t < 100 in the case β = + 1.

3.2. Scaling

In the absence of interactions the translational velocity of a squirmer is a constant,
Usol e, and its rotational velocity is zero. Interactions with neighbours mean that
a squirmer rotates, and its translational velocity changes primarily because of the
change of e. Neither the rotational velocity nor the translational velocity will change
significantly unless squirmers experience a near collision. Thus the motion might be
expected to resemble a random walk of runs interspersed with near collisions.
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The length scale between near collisions will be the effective mean free path, �mfp. If
we assume that squirmers swim with a constant speed Usol between collisions, then the
typical time between collisions will be tmfp = �mfp/Usol . Also the volume swept out by a
squirmer in time t will be around Vp = πa2Usol tmfp, where it is assumed that anything
within a cylinder of radius a will be encountered. Thus the number of particles within
Vp is nVp = 3cUsol tmfp/(4a); if this number is assumed to be unity, we have that, in
dimensionless terms,

tmfp =
4

3c
. (3.6)

For c = 0.1 this time is about 13.3. We see in figure 4 that the time interval needed
before the translational diffusivity becomes constant is larger than this value, because
the motion of squirmers does not become chaotic until several collisions have taken
place.

On the other hand, the time required for a significant change of orientation will be
the effective duration of a collision, rather than the elapsed time between collisions.
This will be independent of the number of collisions as long as there are not so many
of them that the squirmers are continuously colliding. Thus the time after which the
rotational diffusivity becomes constant should be independent of cell concentration
c as long as c is not too large. The validity of these time-scales can be checked by
replotting the results of figure 6. In figure 9(a) we plot DT divided by its large-time
value, DT

inf, against �t/tmfp. The curves collapse completely, indicating that the time-
scale should be scaled in proportion to c−1, as in (3.6). Figure 9(b) shows that the
DR/DR

inf curves do not collapse when time is scaled in this way, whereas figure 9(c)
shows that these curves do collapse when time is not rescaled.

It is also possible to propose scalings with c for the magnitudes of the effective
diffusivities, DT,R

inf . In the case of translational spreading, the random walk model

suggests that DT
inf = (1/3)Usol�mfp or, in dimensionless terms,

DT
inf =

1

3
tmfp =

4

9c
. (3.7)

For c = 0.1, this is about 4.4, which is somewhat larger than the value seen in figure 4,
but the principal prediction is that DT

inf is inversely proportional to c. In the dilute limit,
i.e. c → 0, a squirmer swims with a constant velocity, and the square displacement is
proportional to the square time interval. Thus, the translational diffusivity diverges
when c → 0, which means that the spreading of squirmers is no longer diffusive.
This is because the orientational change in squirmers is caused by hydrodynamic
interactions in this study. In the rotational case, a similar random walk model implies
that

DR
inf =

〈�ω2〉
6tmfp

, (3.8)

where 〈�ω2〉 is the mean square angular displacement during one (near-) collision.
This latter quantity should not depend on the distance travelled between collisions
and therefore should be independent of c. Thus (3.8) predicts that DR

inf ∝ (tmfp)
−1 ∝ c.

To test these predictions we plot DT
inf and DR

inf against c (on a log-log plot) in
figure 10(a) and 10(b). The straight lines in the figure have slope ±1; the graphs thus
show that both the above predictions are borne out by the computed results.

However, in this discussion we have not considered the value of β; the results
used for figures 9 and 10 were all for β = 5. When β = 1, on the other hand, the
simulations show that squirmers sometimes do not change their swimming velocities
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Figure 10. Correlation between Dinf and c (β = 5). Dinf is the converged diffusivity after a
sufficiently long time.

significantly for long periods of time; it is only very near collisions that give rise
to dramatic changes of direction. The larger |β| is the greater the cell separation
at which significant interactions occur, and the stronger the interactions at a given
separation. Thus both DT

inf and DR
inf increase with |β|, while the time for DT to

become approximately constant increases as |β| decreases (figure 8). We do not have
an analytical prediction for these variations with β .

4. A semi-dilute suspension of bottom-heavy squirmers
If squirmers are bottom-heavy, external gravitational torques are generated when

they are not oriented vertically, and they tend to swim upwards on average. The
gravitational direction is taken in the − y-direction in this study. Gbh is the ratio of
the gravitational torque to a scale for the viscous torque based on the squirming
velocity, as defined by (2.10). If one assumes that the micro-organisms swim in water
at 10 body lengths per second with their centre of mass 0.2a down from the geometric
centre, Gbh is about 5 for micro-organisms with radius of 12.5 µm, and about 50 for
micro-organisms with radius of 125 µm. The parameter range used in this section is
Gbh =0 − 100. The only examples of bottom-heavy micro-organisms known to us are
biflagellate algae, such as Chlamydomonas and Dunaliella, which are pullers and hence
modelled by β > 0; therefore there will be little attention paid to the β < 0 case in
this section.

The three-dimensional movement of N = 64 identical bottom-heavy squirmers with
Gbh =10 and 100 in a fluid otherwise at rest is computed, the standard case having
β = 5 and c = 0.1. The instantaneous positions of squirmers and their trajectories over
five time intervals are shown in figure 11 for the Gbh = 100 case (cf. figure 2). We
see that the bottom-heavy squirmers basically swim upwards, but do not swim in
straight lines. The interactions between squirmers generate translational and rotational
velocities, which asymptotically increase as log ε−1, where ε is the dimensionless
minimum separation between squirmer surfaces, in the near-field (see Ishikawa
et al. 2006). Therefore, the hydrodynamic interaction can generate large translational
and rotational velocities when ε is small enough, even though the gravitational
effect is strong. The trajectories of two bottom-heavy squirmers with vertical initial
orientations have been shown in Ishikawa et al. (2006). The results (for β > 0) show
that the squirmers attract each other at first, then they swim together with similar
orientations at small angles to the vertical, and finally they separate from each other.
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g

y

Figure 11. Trajectories during the five previous time intervals for 64 identical bottom-heavy
squirmers with Gbh = 100 and β = 5 in a fluid otherwise at rest (c = 0.1). Gravitational direction
is taken to be − y.

As in Ishikawa & Pedley (2007), we introduce a normalized angular probability
density function, defined as

p′(θ) =
2

nV sin(θ)

∫ ∫
θ=const

P (r, e) dAe dV, (4.1)

where P (r, e) is the probability that there is a squirmer centred at r with orientation
vector e within the solid angle dAe , and θ is the angle from the y-axis. P (r, e) satisfies
the following equation: ∫ ∫

P (r, e) dAe dV = N. (4.2)

If one assumes isotropic orientation of squirmers, then p′(θ) = 1 for all θ . If one
assumes that the intrinsic tendency for the cells to change direction chaotically
is independent of the instantaneous direction, this process is analogous to that
of colloidal particles in suspension under the action of rotary Brownian motion.
Brenner & Weissman (1972) derived p′(θ) for dipolar spherical particles with
rotational Brownian motions, and the solution of the Fokker–Planck equation is
given by the Fisher distribution as:

p′(θ) =
λ

sinh λ
exp(λ cos(θ)), (4.3)

where λ is a coefficient that represents the intensity of the randomizing process. In our
case, however, the intrinsic tendency for the squirmers to change direction depends
on the configuration of surrounding squirmers, so equation (4.3) based on rotational
Brownian motion may not be applicable.

The results for p′(θ) at various values of Gbh are shown in figure 12. When Gbh = 0
the p′(θ) distribution should be isotropic, and p′(θ) ≈ 1 for any θ . When Gbh = 10 the
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Figure 13. Effect of Gbh on the effective velocity of bottom-heavy squirmers (β = 5 and
c = 0.1). (a) xx-component, (b) yy-component.

p′(θ) distribution has a peak at θ = 0, because the bottom-heavy squirmers tend to
orientate toward the y-direction. An effective value of λ in the function given by (4.3)
is obtained from a least-squares fit (λ= 2.43, 38.6 for Gbh = 10, 100, respectively), and
the function is shown in the figure as well. It is found that the results for Gbh =10
shows good agreement with equation (4.3); it follows that the effect of interactions
between squirmers can be quite accurately modelled as a biased random walk in
this case. However, when Gbh = 100 the p′(θ) distribution has a large peak at θ = 0,
and squirmers cannot rotate as far as π radians. The fit to equation (4.3) is much
worse in this case, as shown in figure 12. When Gbh = 100 the strong gravitational
torque restricts the squirmer’s rotational motion, and many squirmers have similar
orientations.

The effective velocity defined by (3.2) is shown in figure 13(a) (β = 5 and c = 0.1).
If squirmers are bottom-heavy, the effective velocity does not tend to zero even when
�t becomes very large. This is because the squirmers tend to swim upwards again
after every interaction, as shown in figure 11. The effective upward swimming velocity
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Figure 14. Effect of Gbh on the translational diffusivity of bottom-heavy squirmers during
the time interval of �t (β = 5 and c = 0.1). (a) xx-component, (b) yy-component.

can be defined as

Ue(�t)|y =

〈∣∣∣∣ry(t + �t) − ry(t)

�t

∣∣∣∣
〉

, (4.4)

and the result for this quantity is shown in figure 13(b). We see that the effective
upward swimming velocity changes little with �t , and that it increases with increasing
Gbh .

In the case of bottom-heavy squirmers the diffusivity tensor (when it exists) is
no longer isotropic. The gravitational direction is taken in the −y-direction and we
will discuss separately the xx- and yy-components of the diffusivity tensor. (The zz-
component should be the same as the xx-component.) The results for the translational
diffusivity at Gbh = 0, 10 and 100 are shown in figures 14(a) and 14(b) (β = 5 and
c =0.1). When Gbh =10 or 100, the xx-component converges to a constant value if
�t is long enough. Therefore, the horizontal spreading of bottom-heavy squirmers
can be correctly described as a diffusive process over a sufficiently long time scale.
The xx-component decreases with increasing Gbh , because the orientations of bottom-
heavy squirmers are concentrated around the y-axis and movement in the x-direction
is suppressed. DT

yy also shows a tendency similar to DT
xx . Thus, we can say that

the vertical spreading of bottom-heavy squirmers, relative to their average upward
velocity, can also be described as a diffusive process over a sufficiently long time scale.

The results for the rotational diffusivity tensor for Gbh = 0, 10 and 100 are shown
in figures 15(a) and 15(b) (β = 5 and c =0.1). The gravitational direction is taken
in the −y-direction, so rotation in the x- or z-direction is suppressed by the torque
due to bottom-heaviness. We see that the xx component of the rotational diffusivity
converges to a constant value even when the gravitational effect is very large; therefore
the rotation of bottom-heavy squirmers about a horizontal axis can be described as
a diffusive process over a sufficiently long time scale. The xx-components have
similar values when Gbh = 0 and 10, though the Gbh = 100 case shows a much lower
value. This is because the hydrodynamic interaction dominates the bottom-heaviness
even for Gbh = 10, and squirmers with Gbh = 0 and 10 can rotate through π radians
(see figure 12). In the case of Gbh = 100, however, squirmers cannot rotate through π
radians, and the rotational motion is strongly restricted by gravity. The yy-component
shows a similar tendency to the xx-component, though the effect of Gbh is smaller.
The torque due to the bottom-heaviness does not have a y-component, so the bottom-
heaviness has less effect on the yy-component than on the xx-component. The rotation
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Figure 16. Effect of volume fraction on the normalized probability density function
distribution (Gbh = 10 and β =5).

of bottom-heavy squirmers in all directions shows diffusive behaviour, though the
p′(θ) distribution for Gbh = 100 in figure 12 does not correspond to the random walk
equation (4.3) for any value of λ. Actually the tendency for squirmers to change
direction depends on the instantaneous configuration of surrounding squirmers, and
all the movements of the individual squirmers are deterministically calculated. The
hydrodynamic interaction is not a random process, even though the overall effect of
cell–cell interactions on the spreading of cells may be indistinguishable from that of
Brownian motion.

The effect of volume fraction on the normalized angular probability density defined
by (4.1) has been investigated, and the results are shown in figure 16(a) (Gbh = 10 and
β = 5). We see that p′(θ) has a larger peak at θ =0 for smaller values of c. If there is
no interaction between squirmers, every bottom-heavy squirmer has its orientation in
the y-direction, and the p′(θ) distribution becomes the Dirac delta function (Brenner
& Weissman 1972). The spread in the orientation is caused by the interaction, and the
interaction increases with increasing c. An effective value of λ in the function given by
(4.3) is obtained from a least-squares fit (λ= 13.3, 2.43 for c =0.025, 0.1, respectively),
and the comparisons with the numerical results are shown in figure 16(b). We see
that the results for c = 0.025 do not correspond well with the equation (4.3), though
the results for c = 0.1 show good agreement, as seen in figure 12.
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The effect of volume fraction on the effective velocity is shown in figure 17 (Gbh = 10
and β = 5). We see that the effective velocity decreases with increasing c at large �t .
This is again because the interaction between squirmers increases with c, and the
interaction prevents them from swimming in straight lines. The constant upward
velocity also decreases with increasing c. The absolute value of the instantaneous
velocity, Ue(0), slightly increases with c, though this is barely distinguishable in
figure 17. The hydrodynamic interaction has the effect of increasing the velocity in
the semi-dilute regime, as mentioned before. The effect of volume fraction on the
translational and rotational diffusivities is also investigated, and the results show that
the diffusivity (when it exists) increases as c increases. The results are straightforward,
so they are omitted in this paper.

In figure 9(a), the translational diffusivity of non-bottom-heavy squirmers was
shown to be dominated by the mean free path. We have constructed an analogous
diagram from the results for Gbh = 10 and β = 5, sorted by �t/tmfp, but the curves do
not overlap well and are not presented. In the case of bottom-heavy squirmers, most
of them swim in more-or-less the same direction, and they experience fewer near-
collisions than non-bottom-heavy squirmers with isotropic orientations. Therefore,
the mean free path is not a dominant length scale for the translational diffusivity, and
the interaction between squirmers is more likely to be dominated by the configuration
of surrounding squirmers. The length scale over which the configuration changes is
approximately that of the mean particle spacing, �mps, which is given by

�mps =

(
4πa3

3c

)1/3

; (4.5)

this corresponds to a time-scale for configuration changes of tmps = �mps/Usol . In
dimensionless terms this is

tmps = (4π/3c)1/3 . (4.6)

So the results for the translational diffusivity have been plotted in terms of �t/tmps

and are shown in figure 18(a). We see that all the curves overlap well and change
their inclination around �t/tmps ≈ 7. When most of the squirmers swim in a similar
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Figure 18. The diffusivities are plotted in terms of �t/tmps. The vertical axis is
normalized by Dinf.
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Figure 19. Effect of β on the normalized probability density function distribution (Gbh = 10
and c = 0.1). The function is fitted by the method of least squares.

direction, the configuration of squirmers does not change significantly over a time
interval of �t/tmps = 1, so the characteristic length scale in this case is much longer
than lmps.

The rotational diffusivity is plotted in terms of �t/tmps, and the results for DR
yy

are shown in figure 18(b). We see again that all the curves overlap well and change
their inclination around tmps ≈ 1. We also constructed an analogous diagram sorted by
unscaled �t instead of tmps, but the curves do not overlap well and are not presented.
We can say, therefore, that the rotational diffusivity of bottom-heavy squirmers is
strongly influenced by the mean particle separation.

The results for the normalized angular probability density with |β| = 1, 5 and 10
are shown in figure 19 (Gbh = 10 and c = 0.1). An effective value of λ in the function
given by (4.3) is obtained from a least-squares fit (λ= 2.24, 43.5, 25.3, 2.43, 1.54 for
β = − 5, −1, 1, 5, 10, respectively), and the curves are shown in the figure as well. We
see that p′(θ) has a larger peak at θ =0 for smaller |β|. The spread in the orientation
is caused by the interactions between squirmers, and the interactions increase with
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increasing |β|. The results show better agreement with equation (4.3) at larger |β|,
when the hydrodynamic interactions are stronger; in this sense the effect of |β| is
similar to that of c.

The effect of β on the effective velocity is shown in figure 20 (Gbh = 10 and
c =0.1). We see again that the effective velocity decreases with increasing |β| when
�t > 10. This is because the interaction between squirmers increases with |β|, and the
interaction prevents them from swimming upwards in straight lines. The sign of β does
not greatly influence these results. The absolute value of the instantaneous velocity,
Ue(0), again increases in large |β| cases, because the far-field hydrodynamic interaction
tends to increase the velocity in the semi-dilute regime, as mentioned before. The effect
of β on the translational and rotational diffusivities is also investigated, and the results
show that the diffusivity (when it exists) increases as |β| increases. The results are
again straightforward, so they are omitted.

5. Summary and discussion
In the case of non-bottom-heavy squirmers, the translational and rotational

spreading of squirmers are correctly described as diffusive processes over a sufficiently
long time scale, even though all the movements of individual squirmers are
deterministically calculated. The translational diffusivity decreases with increasing
c and β , and the rotational diffusivity increases with increasing c and β . The effective
velocity decreases more rapidly with time as c and β are increased, and the absolute
value of the instantaneous velocity, Ue(0), increases with c and β in the semi-dilute
regime.

Hill & Häder (1997) measured the rotational diffusivity of C. nivalis in a dilute
suspension with no imposed background flow, and the result for the dimensionless
rotational diffusivity DR was roughly in the range 0.03–0.17. Vladimirov et al. (2000,
2004) used a more sophisticated method to measure the rotational diffusivity of
C. nivalis, and obtained the dimensionless results of DR = 1 × 10−3–6 × 10−3. These
experiments used dilute suspensions, so the mechanism of the diffusive process is
not hydrodynamic interaction but the intrinsic randomness of individual cells. The
rotational diffusivity obtained in this study (in the parameter range of c = 0.025 − 0.1
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and β = 1 − 10) gives DR in the range 0.09–0.2, which is larger than the values
measured by Vladimirov et al. Therefore, the hydrodynamic interaction between cells
at such volume fractions is at least as important as their intrinsic randomness in
determining their diffusive behaviour, and is likely to be a major factor in the
diffusivity of micro-organisms in a semi-dilute suspension (and even more so in a
concentrated suspension).

If the characteristic time scale of the phenomena of interest is longer than the
time scale for squirmers to show diffusivity, one can use a continuum model for
those phenomena, in which the translational and rotational spreading of squirmers
are described by means of diffusion tensors. This treatment sounds similar to that for
Brownian particles; however, there are some essential differences. First of all, there is a
finite Brownian diffusivity even for a single particle, i.e. c → 0, while the diffusivity of
squirmers varies as c−1 (translational – (3.7)) or c (rotational – (3.8)). This is because
Brownian motion is induced by the interaction between a particle and molecules of
the solvent fluid, but the diffusion of squirmers is induced only by the interaction
between particles. Since the sizes of the interacting particles are very different, the
time scale to show diffusivity is also different. If one assumes that the micro-organisms
swim in water at 10 body lengths per second, dimensional tmfp( = 4a/(3cUsol )) is 0.66 s

for c = 0.1 and 6.6 s for c =0.01, and dimensional tmps( = [
√

4πa3/(3c)]−3/Usol ) is 0.17 s
for c =0.1 and 0.37 s for c = 0.01. The characteristic time scale for Brownian motion
is much shorter than this. In the case of Brownian particles, the translational and
rotational diffusivities are given by (1.3). Both of them increase with the temperature,
and the dimensionless DR is equal to three-quarters of dimensionless DT . In the case
of squirmers, however, DR is much less than DT , and the changes of DT and DR with
c and β are in the opposite sense.

In the case of bottom-heavy squirmers, the normalized probability density shows
good agreement with equation (4.3) when the effect of hydrodynamic interaction is
more important than the bottom-heaviness. In such cases, the rotational spreading
of squirmers can be modelled as a biased random walk after a sufficiently long time.
The translational spreading of bottom-heavy squirmers in the horizontal direction
can also be correctly described as a diffusive process over a sufficiently long time
scale, and the same is true for the vertical spreading relative to the average upward
velocity. Both translational and rotational diffusivities are increasingly suppressed
with increasing Gbh . The effects of c and β do not change the results qualitatively,
and the diffusivities increase with increasing c and β .

The rotational diffusivities of bottom-heavy squirmers obtained in this study (in
the parameter range of Gbh = 10–100, c =0.025–0.1 and β = 1–10) are in the range
of DR

xx = 0.001–0.18 and DR
yy = 0.005–0.23, which are comparable or larger than the

results of Vladimirov et al. (DR =1 × 10−3–6 × 10−3). We have, therefore, concluded
that the hydrodynamic interaction between cells can be a major factor in determining
the diffusivity of bottom-heavy micro-organisms in a semi-dilute suspension. Figure 21
shows the correlations between the xx- and yy-components of DR

inf and c, in which
a linear function is fitted by the method of least squares. It is found that both
components of the rotational diffusivity of bottom-heavy squirmers are roughly
proportional to c, similar to the results for non-bottom-heavy squirmers.

T. I. was supported by a JSPS postdoctoral fellowship for research abroad from
2003 to 2005. We are very grateful to J. T. Locsei for his contribution to the scaling
arguments of § 3.2.
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Figure 22. Comparison of DT and DR calculated from the square displacement and the
velocity auto-correlation for non-bottom-heavy squirmers with β = 5.

Appendix. Comparison of diffusivities calculated from the square displacement
and the velocity auto-correlation

The aim of this appendix is to compare the translational and rotational diffusivities
calculated from the square displacement and the velocity auto-correlation. The
diffusivities were defined by equations (2.5) and (2.6). If the time interval is long
enough, diffusivities calculated both by the square displacement and the velocity
auto-correlation should be the same. When the time interval is shorter, however, the
diffusivity calculated by the velocity auto-correlation should be twice as large as that
calculated by the square displacement. This can be shown by substituting into (2.5)
the Taylor series for 〈U(t)U(0)〉 as

〈[r(t) − r(0)]2〉 = t2〈U(0)2〉 + · · · . (A 1)

In figure 22, we plot the diffusivities, for non-bottom-heavy squirmers with β =5,
calculated from the square displacement and the velocity auto-correlation. We see
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that the diffusivity calculated by the velocity auto-correlation is twice as large as that
calculated by the square displacement for short enough time intervals, as predicted.
Moreover, the two diffusivities coincide for long enough time intervals, from which
we can confirm the reliability of the present results. We also calculated the two
diffusivities in other cases used in this study, and they again coincide for long enough
time intervals.
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